

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

0.12.0 - 2020-10-03

Added

	Python’s built-in in keyword now works with a ConfigFile.

Example:

config = ConfigFile('./pyproject.toml')

'tool.poetry' in config
>>> True

Changed

	Depreciated stringify() in favor of just using the built-in str().

Fixed

	Addresses issue #25 (INI parser isn’t converting back to string).

0.11.0 - 2020-08-07

Added

	ConfigFile can now accept yaml and toml files as optional extra file types.
As long as the extras (yaml and toml) are installed, those file types can also
be used.

	ConfigFile can now be indexed into using an array notation to get, set, and delete keys.

	path property to ConfigFile

	original_path property to ConfigFile

	wild optional argument to has on ConfigFile to check if the file has an
occurrence of the key anywhere in the file.

Removed

	BaseParser from the public API.

	parser optional argument from the ConfigFile constructor.

Changed

	path on the ConfigFile is now a property that can only be retrieved. contents is now private
but you can use .stringify() instead to get the contents. parser is now also private.

	restore_original in ConfigFile now raises a FileNotFoundError instead of an OSError if the original
file path does not exist.

	restore_original’s optional argument is now called original_path rather than original_file_path.

Fixed

	default in ConfigFile’s get method can now be None. Previously, it was defaulted to the
value None so there was no way of distinguishing between the default value and a user inputted
value of None.

0.10.0 - 2020-05-10

Changed

	toml and pyyaml are now optional extra dependencies. This allows you to
not have to install them if you aren’t using them.

	retrieve_all in JsonParser’s get method is now called get_all for
consistency. It isn’t publicly available yet. The thought is to write a custom
ini parser first that supports multiple of the same keys and subsections.
This way you can have the get_all, set_all, delete_all, etc. methods
for all file type parsers. I would have to weight if that added complexity
of not using the built-in configparser and roll our own for some added
features is worth it or see if there are ways to work around it with
configparser that are ideal.

Fixed

	You can now specify a default and still coerce your return type. Previously,
if you specified a default, there was no logic in that branch to coerce your
return type as well.

0.9.0 - 2020-02-09

Added

	default optional parameter to the get() method of ConfigFile.
The allows a default value to be fallen back to if the given key is missing.

	return_type optional parameter to get() method of ConfigFile. This
allows you to coerce the return type to one of your choosing by feeding it
the return value.

Changed

	Automatic type parsing is now off by default. This is because of the addition of
the return_type optional parameter. After using the package more, I think
the explicitness of specifying the type you’re after or that you’d like to
automatically parse the type to one of the basic types is more maintainable.
However, I think the option to automatically parse or parse a whole section of
values is still a useful one.

	The parse_type parameter to ConfigFile’s get() method is now called
parse_types.

0.8.0 - 2020-02-02

Added

	More type hints to ConfigFile and IniParser.

	nested_lookup dependency to help with modifying deeply nested structures
(JSON + YAML)

	JsonParser so you can now specify .json files to be parsed.

Changed

	The original content of the passed in file is now called content
instead of contents. This is for consistency since the parsed version is
called parsed_content.

0.7.0 - 2020-01-27

Fixed

	Support for using custom parsers with ConfigFile with the parser optional
argument. This was technically supported before, but it was not tested and found
to not actually use the passed in parser once tested.

Changed

	The reset() method on ConfigFile is now called restore_original().
The behavior is the same. This was done to better describe what exactly that method
is doing. Since the file is not written back out with every set() or delete()
and calling save() explicitly is required, reset() may have been confused with
resetting the changes you’ve made rather than deleting and restoring the original
configuration file.

0.6.0 - 2020-01-24

Changed

	Bumped down python version requirement to 3.6 and now test 3.6, 3.7, and 3.8 on CI.

0.5.0 - 2020-01-19

Added

	Support for retrieving entire sections as a dict with get().

0.4.0 - 2020-01-19

Added

	reset() and save() methods to ConfigFile. This allows you to reset your
configuration file to an “original state,” given the original config file path.
However, say you have a config/config.json file. Then it will automatically try
to look for config/config.original.json if no file path is specified. The save()
method should be called after your changes to the config file. It will write them
back out.

	Raise test coverage to 93%.

0.3.3 - 2020-01-18

Changed

	_split_on_dot is no longer in base parser (now in a utils file). Also, the default
behavior is now to split on every dot and split on only the last dot if specified

Fixed

	ConfigFile was trying to use _split_on_dot, but it no longer inherited from base parser.

	TypeError when setting the key/value pairs since configparser requires the option
to be a string. The parser now just converts the value to a string if it is not one
and then adds the key/value pair. It would still be parsed correctly when retrieving
it.

0.3.1 - 2020-01-17

Fixed

	isinstance call for BaseParser to be correctly used.

0.3.0 - 2020-01-17

Added

	Abstract base parser as a contract for concrete file format parser implementations.

	Exposed ConfigFile, BaseParser, and ParsingError to the Public API. The base
parser is exposed to allow future custom extensions of the config file and what it
can parse by its users.

	has_section and has_key is now changed to a single has method which determines
whether you’re checking a section or key by the presence of a dot.

	IniParser to support the ini format. It uses configparser internally, but it is
only exposed through the ConfigFile object.

0.2.0 - 2020-01-04

Added

	Parsing of strings to their native values

0.1.0 - 2020-01-04

	Initial Release

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at eugenetriguba@gmail.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

Contributing to Config File

The preferred workflow is via pull requests for code changes.

If you find a bug or want to suggest an improvement, etc., please open a issue.
This will make sure it gets noticed. You’re also welcome to submit a pull request in this repository.

Here are some guidelines to keep in mind when submitting a pull request:

	Commit history: Try to keep a clean commit history so it is easier to
see your changes. Keep functional changes and refactorings in separate commits.

	Commit messages: Have a short one line summary of your change followed by as many
paragraphs of explanation as you need. This is the place to clarify any subtleties
you have in your implemeƒntation, document other approaches you tried that didn’t
end up working, any limitations on your implementation, etc. The most important
part here is to describe why you made the change you did, not simply what the
change you made is.

	Changelog: Please ensure to update the changelog by adding a new bullet under
an Added, Changed, Deprecated, Removed, Fixed, or Security section
headers under the Unreleased version when applicable. If any of those sections
are not present, feel free to add the one you need. See
Keep a Changelog [https://keepachangelog.com/en/1.0.0/] if you need guidance
on what makes a good entry since this project follows those principles.

	Ensure the tests pass: poetry run task test to run all tests.

	New features should be accompanied with tests for them:

	Unit tests are written using pytest [https://docs.pytest.org/en/latest/].

	Pre-commit pipeline: There is a pre-commit pipeline to enforce standard code format.

Make sure to install pre-commit before making commits.

$ pre-commit install

Note: if any of the items had to do any reformatting, sorting, etc., the commit will
fail. You’ll have to re-add the items it fixed and try again.

	CI Pipeline: There is a CI pipeline that is run on commits and pull requests that
ensures the tests pass.

To get started, make sure you have poetry installed and run poetry install -E yaml -E toml and poetry shell to enter the virtual environment.

Config File

Simple manipulation of ini, json, yaml, or toml files

[image: _images/config-file.svg]Python Version
[image: _images/config-file1.svg]Version [https://pypi.org/project/config-file/]
[image: _images/code%20style-black-000000.svg]Style [https://pypi.org/project/black/]
[image: _images/badge.svg]Build Status [https://github.com/eugenetriguba/config-file/actions/]
[image: _images/badge1.svg]Codecov [https://codecov.io/gh/eugenetriguba/config-file]

About Config File

The Config File project is designed to allow you to easily manipulate your
configuration files with the same simple API whether they are in INI, JSON,
YAML, or TOML.

Installation

Config File is available to download through PyPI.

$ pip install config-file

Installing Extras

If you want to manipulate YAML and TOML, you’ll want to download the extras as well.

$ pip install config-file[yaml, toml]

You can also use Poetry [https://python-poetry.org].

$ poetry install config-file -E yaml -E toml

Usage

For this overview, let’s say you have the following ini file
you want to manipulate.

Do note, however, that the ini format is the oddest format that
ConfigFile supports in that it has no formal specification and is
not type aware. When retrieving items from the file, it will return
them as strings by default. Others are more type aware and do not
require as much type coercion.

[section]
num_key = 5
str_key = blah
bool_key = true
list_key = [1, 2]

[second_section]
dict_key = { "another_num": 5 }

It must have a .ini extension in order
for the package to recognize it and use the correct parser for it.

Setting up ConfigFile

To use the package, we import in the ConfigFile object. This object
is the only thing considered to be part of the public API.

We can set it up by giving it a string or pathlib.Path as the argument.
Any home tildes ~ in the string or Path are recognized and converted
to the full path for us.

from config_file import ConfigFile

config = ConfigFile("~/some-project/config.ini")

Handling ConfigFile Initialization Errors

from config_file import ConfigFile, ParsingError

try:
 config = ConfigFile("~/some-file.ini")
except ParsingError:
 print("could not parse the file")
except ValueError:
 print("extension that isn't supported was used or is a directory")
except FileNotFoundError:
 print("file does not exist")

Using get()

A recurring pattern you’ll see here is that all methods that
need to specify something inside your configuration file will
do so using a dot syntax.

Retrieving keys and sections

So to retrieve our num_key, we’d specify the heading and the
key separated by a dot. All values will then be retrieved as
strings.

config.get('section.num_key')
>>> '5'

While we can retrieves keys, we can also retrieve the entire
section, which will be returned back to us as a dictionary.

config.get('section')
>>> {'num_key': '5', 'str_key': 'blah', 'bool_key': 'true', 'list_key': '[1, 2]'}

Furthermore, you can also index into the ConfigFile object
to retrieve keys if that is preferred.

config['section']['num_key']
>>> '5'

Coercing the return types

However, some of these keys are obviously not strings natively.
If we are retrieving a particular value of a key, we may want to
coerce it right away without doing clunky type conversions after
each time we retrieve a value. To do this, we can utilize the
return_type keyword argument.

config.get('section.num_key', return_type=int)
>>> 5

Sometimes we don’t have structures quite that simple though. What
if we wanted all the values in section coerced? For that, we can
utilize a parse_types keyword argument.

config.get('section', parse_types=True)
>>> {'num_key': 5, 'str_key': 'blah', 'bool_key': True, 'list_key': [1, 2]}

It also works for regular keys.

config.get('section.num_key', parse_types=True)
>>> 5

Handling non-existent keys

Sometimes we want to retrieve a key but are unsure of if it will exist.
There are two ways we could handle that.

The first is the one we’re used to seeing: catch the error.

try:
 important_value = config.get('section.i_do_not_exist')
except KeyError:
 important_value = 42

However, the get method comes with a default keyword argument that we
can utilze for this purpose.

config.get('section.i_do_not_exist', default=42)
>>> 42

This can be handy if you have a default for a particular configuration value.

Using set()

We can use set() to set a existing key’s value.

config.set('section.num_key', 6)

The method does not return anything, since there is nothing
useful to return. If something goes wrong where it is unable to set
the value, an exception will be raised instead. This is the case
for most methods on ConfigFile, such as delete() or save(),
where there would be no useful return value to utilize.

With set(), we can also create and set keys that don’t exist yet.

config.set('new_section.new_key', 'New key value!')

Would then result in the following section being added to our original file:

[new_section]
new_key = New key value!

The exact behavior of how these new keys or sections are added are a bit
dependent on the file format we’re using, since every format is a little
different in it’s structure and in what it supports. Mostly though, ini
is just the odd one.

If we try the following in ini, which does not support subsections or
nested keys, we simply get a single section.

config.set("section.sub_section.sub_sub_section.key", 5)

[section.sub_section.sub_sub_section]
key = 5

Lastly, we can set values using an array notation as well. The underlying
content is all manipulated as a dictionary for every file type. If we wanted
to create a new section, we’d simply set it to be an empty dictionary.

config['new_section'] = {}

Which would result to be an empty section:

[new_section]

Using delete()

delete() allows us to delete entire sections or specific keys.

config.delete('section')

Would result in the entire section being removed from our configuration file.
However, we can also just delete a single key.

config.delete('section.num_key')

We can also use the array notation here as well.

del config['section']['num_key']

Using has()

has() allows us to check whether a given key exists in our file. There
are two ways to use has().

The first is using the dot syntax.

config.has('section.str_key')
>>> True
config.has('does_not_exist')
>>> False

This will check if our specific key or section exists. However, we can
also check in general if a given key or sections exists anywhere in our
file with the wild keyword argument.

config.has('str_key', wild=True)
>>> True

Using save()

For any changes we make to our configuration file, they are not written out
to the filesystem until we call save(). This is to avoid unnecessary write
calls after each operation until we actually need to save.

config.delete('section.list_key')
config.save()

Stringifying our ConfigFile

To retrieve the file as a string, with any changes we’ve made, we can use the
built-in str() method on the ConfigFile. This will always show us our latest changes since it is stringify-ing our internal representation of the configuration file, not just the file we’ve read in.

str(config)
>>> '[section]\nnum_key = 5\nstr_key = blah\nbool_key = true\nlist_key = [1, 2]\n\n[second_section]\ndict_key = { "another_num": 5 }\n\n'

Depreciated but also works.
config.stringify()
>>> '[section]\nnum_key = 5\nstr_key = blah\nbool_key = true\nlist_key = [1, 2]\n\n[second_section]\ndict_key = { "another_num": 5 }\n\n'

Using restore_original()

If we have a initial configuration file state, we could keep a copy of that
initial file and restore back to it whenever needed using restore_original().

By default, if we created our ConfigFile object with the path of ~/some-project/config.ini,
restore_original() will look for our original file at ~/some-project/config.original.ini.

config.restore_original()

However, if we have a specific path elsewhere that this original configuration file is or it
is named differently than what the default expects, we can utilize the original_path
keyword argument.

config.restore_original(original_path="~/some-project/original-configs/config.ini")

Format Versions Supported

Format	Specification version supported
————-	————-
INI	No official specification.
JSON	RFC 7159 [https://tools.ietf.org/html/rfc7159.html]
YAML	v1.2 [https://yaml.org/spec/1.2/spec.html]
TOML	v1.0.0-rc.1 [https://github.com/toml-lang/toml/releases/tag/v1.0.0-rc.1]

For ini and json, Python’s standard library modules are used.
Regarding ini, there is no formal specification so the syntax that configparser
supports is what is supported here.

License

The MIT [https://github.com/eugenetriguba/config-file/blob/master/LICENSE] License.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

_static/plus.png

